Рис. 2.12. Схема производства стеновых панелей из автоклавного газошлакобетона:

I    — шлаковозный ковш; 2 — грануляционный барабан; 3 — скреперная установка; 4 — бункер с решеткой; 5 — сушильный барабан; 6 — известь; 7 — гипс; 8— дробилка для извести и гипса; 9 — тарельчатые питатели; 10 — мельница;

II    — силосный склад для известково-шлакового порошка; 12— расходные бункеры; 13 — пневмотрубопровод; 14 — бак для воды; 15 — дозаторы; 16 — бак для ПАВ; 17— весы для алюминиевой пудры; 18— растворосмеситель; 19— смеси-тель-раздатчик; 20 — вагонетка с формой; 21 — автоклав; 22 — место распалубки изделий; 23 — мостовой кран; 24 — участок отделки изделий; 25 — склад готовой продукции щие на гранулированных доменных шлаках. Отвальные шлаки применяют, если величина их модуля основности составляет не менее 0,6, а модуля активности (процентное отношение А1203 к Si02) — не менее 0,4.

Известково-шлаковый цемент начинает схватываться не позднее чем через 2 ч после затворения, его удельная поверхность должна составлять не менее 4000 см2Д, количество активного СаО — не менее 10%.

В производстве ячеистых бетонов эффективно также применение шлакопортландцемента.

Гранулированные и отвальные шлаки, измельченные до удельной поверхности 1500—3500 см2/г, могут служить не только компонентами вяжущего, но и активными наполнителями ячеистых бетонов наряду с другими тонкодисперсными кремнеземистыми материалами.

Прочность ячеистых бетонов на шлаковых материалах изменяется в зависимости от средней плотности. Так, теплоизоляционный га-зозолошлакобетон с р0 = 400—500 кг/м3 имеет прочность на сжатие 0,6—2 МПа, а конструктивно-теплоизоляционный (р0 = 600—1200) — 3—12,5. Максимальная прочность ячеистых бетонов достигается при соотношении между шлаковым вяжущим и кремнеземистым компонентом в пределах 1:0,5—1:1,2 в зависимости от особенностей сырьевых материалов. На прочность также влияет тонкость помола шлаковых материалов. Так, при увеличении удельной поверхности шлакового вяжущего от 3500 до 6500 см2Д его прочность возрастает на 50—60%. Показатели прочности и других свойств значительно улучшаются при понижении водотвердого отношения до 0,25—0,35, что достигается виброобработкой при приготовлении ячеистой смеси и на стадии формования. Вибрационное воздействие, разжижая смесь и увеличивая поверхность взаимодействия сырьевых компонентов, способствует интенсификации процессов газовыделения и гидратации, тем самым повышая прочность на 25—35% и снижая усадочные деформации на 15—20%. Кроме комплексной виброактивизации смесей, для снижения водотвердого отношения применяют длительное перемешивание и вводят пластифицирующие ПАВ.

Трещиностойкость и несущая способность конструкций из ячеистых бетонов зависят от величины усадочных деформаций. Усадка автоклавных ячеистых бетонов на основе шлаковых материалов составляет 0,45—0,7 мм/м, безавтоклавных — 2 мм/м и более. Деформации набухания достигают 0,4—1,6 мм/м. Для снижения деформаций усадки и набухания в ячеистобетонные смеси вводят структурообразующие компоненты в виде крупных заполнителей, таких как шлаковая пемза, доменный гранулированный шлак и др. Например, замена 20—25% объема кремнеземистого компонента крупным пористым заполнителем уменьшает усадочные деформации ячеистых бетонов на 50—70%.


⇐ вернуться к прочитанному | | перейти на следующую страницу ⇒